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Natural modes of water oscillation inside harbours are known to occur with 
periods of the order of minutes. It seems likely that these oscillations are excited 
by water fluctuations of similar period outside the harbour and an often quoted 
cause of such fluctuations is the phenomenon of surf beats. These are thought to 
be long waves which are reflected back out to sea when a primary wave system 
breaks upon a beach. In  this paper it is shown theoretically that the natural 
oscillations of a harbour can be excited directly, without breaking of the primary 
wave system, by set-down beneath wave groups, which is a long-period distur- 
bance travelling towards the shore line at the group velocity. This theory is in 
agreement with model experimental results which show that, when the group 
period is close to a natural period of the harbour, resonance will occur with the 
set-down behaving as if it  were a real long wave. 

1. Introduction 
The frequency spectra of sea waves are typically narrow band. In  particular, a 

group period, which is just the reciprocal of the difference between typical wave 
frequencies, will be longer than wave periods. Thus waves tend to travel in well- 
defhed groups in the sea. 

One effect of wave grouping is to cause set-down beneath wave groups, which 
is a phenomenon that was first described by Longuet-Higgins & Stewart ( 1  964). 
The mechanism producing set-down can be explained in the following way. The 
velocity of water particles due to wave motion will clearly be large in groups of 
high waves compared with the water velocity in between the groups. As indicated 
by Bernoulli’s equation this will tend to cause a reduction in water pressure which 
is proportional to the square of the water particle velocity. Thus the water pres- 
sure will tend to be low beneath groups of high waves compared with the pressure 
in between the groups. If the usual assumption of constant air pressure is made 
then the mean water level will become depressed beneath the groups and a corres- 
ponding rise in the mean level will occur between the groups. This surface pertur- 
bation will tend to induce a wavelike flow beneath the surface and so a long-period 
disturbance is formed. In  deep water, surface waves move through the groups 
with twice the group velocity and so the group pattern is continually changing. 
This prevents the set-down from building up. However, when the primary wave 
system moves into shallow water, where waves travel only slightly faster than 
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the group, a more persistent group pattern will occur which allows a larger set- 
down to form. Using the formula derived by Longuet-Higgins & Stewart (1964), 
the set-down is shallow water ( k d <  1) beneath groups of waves of amplitude a is 
given by - 6 = - 3ga2/2u2d2. 

Thus, for swell waves of period 15s and amplitude 1 m this formula gives an 
associated set-down in a depth of 20 m of order 0.2 m. Therefore, apart from the 
obvious rapid increase in set-down with wave height, which will lead to significant 
long-period disturbances as storm waves reach the coastline, quite large set- 
downs will also be associated with swell waves of moderate height. 

Tucker (1950) reported a correlation, which occurred off a beach in Cornwall, 
between fluctuations of period of the order of minutes and the envelope of in- 
coming waves. This correlation occurred with the long waves lagging behind the 
wave envelope by P 5  min. It was suggested by Longuet-Higgins & Stewart 
( 1  964) that the time lag in these long waves or surf beats corresponded to the 
time taken for the ordinary waves to propagate into the breaker zone and for the 
associated long-period fluctuations to be reflected back as a free wave. Thus surf 
beats are thought to be long waves which propagate out to sea after being gen- 
erated by ordinary waves breaking on a beach. Wilson (1957) has discussed the 
possibility that surf beats as well as barometric pressure variations could be 
responsible for exciting harbour resonances of period of the order of minutes. 

The mechanism whereby set-up occurs on a beach shorewards of the breaker 
zone was also described by Longuet-Higgins & Stewart (1964). Set-up has been 
observed by Saville (1961) and consists of a gradual rise in the mean water level as 
a breaking wave travels up a beach. Bowen & Inman (1971) have shown how 
set-up shorewards of a breaking zone can become coupled with waves propagating 
parallel to a beach and form a standing edge-wave pattern when the beach is 
bounded by prominent headlands. Clarke (1974) has suggested that such edge 
waves formed on a beach near Port Kembla could be responsible for the excitation 
of resonant modes of the harbour. 

The above arguments indicate that surf beats and edge waves are generated by 
ordinary waves breaking on a beach. Thus two of the frequently quoted causes of 
harbour resonance rely on the presence of a beach near the harbour. In this paper 
theoretical and model experimental results are presented which show that the 
natural modes of water oscillation of a harbour can be excited by set-down be- 
neath wave groups. This mechanism of harbour resonance differs from excitation 
due to surf beats or edge waves in that it is no longer necessary to have ordinary 
waves breaking on a beach near the harbour. 

To the author’s knowledge no one has previously demonstrated that set-down, 
which is not a true long wave because it propagates a t  the group velocity, can 
excite longwaves inside harbours. However, the theoretical work presented in this 
paper shows that when a Stokes expansion of the wave equations is carried out to 
second order in the wave amplitude an imbalance occurs between the long-period 
fluctuations in the water pressure inside and outside the harbour entrance. This 
imbalance arises because primary wave heights inside the harbour are different 
from wave heights outside, giving rise to different set-downs inside and outside 
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FIGURE 1. Plan view of the set-up assumed for the theoretical calculations. 

the harbour. Thus, in order to match water pressures across the harbour entrance 
it is necessary to introduce an additional velocity potential which obeys the 
usual wave conditions. In other words, it  becomes necessary to introduce a real 
long wave for purposes of continuity and it is this long wave that will be amplified 
when the group period is close to a natural period of the harbour. 

In  $2 a calculation is made of the response of a geometrically simple harbour 
to water waves. In  $ 3  the calculation is taken to second order in the Stokes 
expansion of the wave equations for the case of a primary wave system made up 
of two frequencies. The form of the additional velocity potential required for 
continuity of pressure is obtained and its significance for a real harbour is dis- 
cussed. Section 4 contains experimental results obtained by using a model har- 
bour which was subjected to a primary wave system consisting of two frequencies. 
Evidence is presented for the existence in the experiments of a secondary wave 
with a frequency of oscillation equal to the group frequency of the primary wave 
system. However, it  is shown that the model harbour responded to the resultant 
of the secondary wave, which is purely a model effect, and the set-down, which 
can be expected in a real sea. This leads to the final conclusion that a real harbour 
will respond to set-down beneath wave groups in the manner indicated by the 
theoretical work. Finally, an appendix contains a derivation of the velocity 
potential of the secondary wave. 
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2. First-order harbour response 
Here the response of a geometrically simple resonator to water waves is calcu- 

lated. The resonator consists of a long narrow channel blocked off a t  one end and 
open at the other which is joined to a wave flume wider than the channel. A wave 
flume is assumed to exist outside the resonator simply in order to make calcula- 
tion of second-order potentials more manageable. The configuration, which is 
shown in figure 1, can be expected to retain some of the features of a harbour basin 
open to the sea. Incident and reflected waves are assumed to travel parallel to 
the wave flume and resonating channel, in the x direction, where x, y and z form 
the right-handed orthogonal co-ordinate system shown in figure 1, with the still 
water level occurring a t  z = 0. The basic equation for incompressible irrotational 
motion is 

where the fluid velocity is 

The boundary conditions are 

on the bottom z = - d  and 

vz$h = 0, 

q = (u, 0, w) = - v$h. 

w = o  

T t  +UTZ + W T U  -w = 0, 

*q2+gq-$h t  = 0, (4) 
on the free surface z = q. 

the first-order velocity potential outside the resonator is 
If a wave of amplitude a is incident on the resonator the appropriate form for 

ig eosh k(z  + d )  
w cosh kd 

$ha) = [a(e-ikx + eikx) +f(z, y)] e - i w t .  (5) 

Here the first term represents the incident wave, the second its reflexion from the 
wall a t  x = 0 and the third term is the wave radiated from the mouth of the 
resonator. Equation (1) and the boundary conditions (2)-(4) are satisfied to first 
order by the potential given in (5) provided that 

fzx + f K J  + k2f = 0 

w2 = kg tanh kd. 

(6) 

(7)  

The solution forf which satisfies w = 0 on y = k +W (the walls of the wave flume) 
can be written in the form 

and the dispersion relation for surface waves is satisfied, i.e. 

lVn( T) 00 

f =  C A,cos- y+- exp(-p,z), 
AT=O W 

where (6) gives 

Let the wave slope at  the harbour entrance be represented by Ce-iwt. Then at 
x = o  

p * r  = [ (Nn/  W)2 - k2]% 
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Multiplying both sides of the above equation by cos 2VnJY-l (y + W )  and inte- 
grating over the range IyI < gW gives 

- ibC ( - l)N+12C sin (Nnbl W) 
, A2N+1 = 0. 

NnP2'v 
A o = - & p  A m =  

For simplicity the wavelength 2n/k is assumed to be larger than the flume width 
W so that the dominant term in the radiated wave will be independent of y. Then 
the first-order potential outside the resonator becomes 

The first-order potential inside the resonator, which satisfies u = 0 on x = - 1 
(the end of the resonator), will take the form 

iDg cosh k(z + d) 
w cosh kd 

$CU = {exp [ik(x + l ) ]  + exp [ - i k ( s  + Z)]) eciwt. 

The boundary condition on wave slope at x = 0 requires 

- 2kD sin kl = C. 

Continuity of potential across the harbour entrance (of width b )  requires 

2 0  cos kl = 2a - ibCJk W .  

Solving these two simultaneous equations for D and C gives 

C =  D =  - 2ka sin kl a 
cos k l -  ib W-1 sin kl' cos k l -  i b  W-1 sin kl' 

Thus the largest response inside the harbour is obtained when 

k l=4(2n+ l )n ,  n = 0 , 1 , 2  ,..., (8) 

i.e. h = 2n/k = 41/(2n+ l) ,  

and the amplification factor, which is defined to be the wave height at x = - 1 
divided by 2a, is Wlb. In  particular, the longest resonant wave (n = 0) has a 
wavelength equal to four times the length of the resonator. 

Summarizing, one can say that for waves incident on the resonator the velocity 
potential outside takes the form 

cosh k(z + d) 
w cosh kd 

#(1) = g [asin (wt + kx) +a sin (ot -kx) -e cos (wt - kx-a)] (9) 

while the potential inside has the form 

@U = ' I D 1  w coshk(z~d){s in[wt+k(3:+Z)- -a]+~in[~t -h- (~+Z)-a]] ,  cosh kd (10) 

where e = blCI/Wk, ID1 = a/(cos2kl+b2W-2sin2kl)*, (11) 

ICI = 2kIDJsink1, 

where use is made of the first-order potentials (9) and (10). 

t ana  = bW-ltankl. 

The response of the resonator is taken to second order in the next section, 
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3. Second-order harbour response 
Here the second-order potentials describing flow induced by set-down beneath 

wave groups are derived, both inside and outside the resonator. These potentials 
will then be matched across the entrance to the resonator. 

When the second-order wave elevation given by (4) is substituted into (3) and 
use is made of the approximations 

($hp)2=)1 r $ p ( x  = 0) +7/(1’$@(x = O ) ,  

(w‘”)2=?I w@)(x = 0) + ?p wp’ (2 = O ) ,  

4:;) + q p  = @) ( W g  + g w p )  + 2q“’ * qp. 

one obtains the boundary condition to be satisfied at x = 0 in the form 

(12)  

This equation can be interpreted as a surface perturbation on the right-hand side 
inducing the second-order potential flow on the left-hand side. 

If it is assumed that two sine waves are incident on the resonator, then, using 
(9), the first-order potential outside the resonator will take the form 

g cosh kj  (z  + d )  
$hi% = c [aj sin (w j  t + ki x) + a j  sin (wi t  - kj x) 

j=1,2 wjcoshkjd 
- ei cos (wi t  - kix - ai)]. 

This potential may be used to evaluate the terms appearing on the right-hand 
side of (12). These terms consist of products of first-order quantities and their 
fluctuating parts may be expressed as sines and cosines with arguments of the 
form 

w-t ~f: k-x, w-t If: k+x, w+t k+x, w+t f k-x, 

where 

Since the main interest in this paper is the excitation of harbour resonances of 
period of the order of minutes and the sum frequency w+ can be expected to give 
fluctuations on the scale of seconds, only those terms involving the difference 
frequency w- will be retained, Let the part of the second-order potential fluctuat- 
ing at  the difference frequency be denoted by $2). This potential must satisfy (1) 
and (2) as well as the surface condition (12) and is found to take the form 

&%b = A cosh k-(x + d )  (al a2 [sin (w-t + k-x) + sin (w-t - k-x)] 

- a1 e ,  cos (w-t - k-x - a,) + a2 el cos (w-t - k-x + al) 
+ el e2 sin (o-t - k-x - a-)) + B cosh k+(z + d )  {al u, [sin (w-t + k+x) 
+ sin (w-t - k+x)] - a, e,  cos (w-t - k+x - a,) + u2 el cos (w-t + k+x + a,)}, (13) 
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where A and B are defined by 

A{(w-), cosh k-d -gk-  sinh k-d} = 
w-k k 

w1 w2 
g 2  (1 + tanh k, d tanh k, d )  

gk1 gk 
2% 2w2 

+- (w: tanh k, d -gk,) -2 (w: tanhk,d-gk,), (14) 

w-k k ' 
w1 w2 

B{(w-)2 cash k+d - gk+ sinh k+d} = g2 (1 - tanh k, d tanh k, d )  

gk1 5% 
2w1 2w2 

+- (w? tanh k,d - gk,) - - ( w i  tanh k,d-  gk,). (15) 

Using (lo), the first-order potential representing the response of the resonator 
to two incident waves will take the form 

Using this potential to evaluate the right-hand side of the surface condition (12) 
will lead to the slowly varying part of the second-order potential inside the 
resonator. This potential must also satisfy (1) and (2) and is found to be 

$2) = A cosh k-(x + d)lD,I ID2[ {sin [w-t + k-(x + I )  - a-3 

+ sin [w-t - k-(x + 1 )  - a-1) 

+ B cosh k+(x + d )  lDll IDz[ {sin {w-t + k+(x + I) - a-> 
+ sin [w-t - b+(x + 1) - a-I>, (16) 

where A and B are given by (14) and (1  5 )  and a- = a2 - 01'. It can be seen straight 
away that the boundary condition u. = 0 at x = - 1 is automatically satisfied by 
this expression for &). 

In  shallow water ( k j d  < 1, j = 1, 2) the coefficients A and B reduce to the 
simple forms 

Thus B (k-d)2 A ,  so that B < A. It can also be shown that this inequality 
between A and B holds in deep water (ki d 9 1) and so from now on those terms 
involving B in the second-order potential will be neglected both inside and outside 
the resonator. 

Imagining for the moment that the mouth of the resonator is blocked off, one 
finds that the amplitude of the set-down a t  the wall x = 0 is given approximately 
by 
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Comparing this expression with that given in the introduction it can be seen 
that the set-down associated with a standing wave pattern is twice that associated 
with progressive waves. The term set-down should only be used to refer to the 
depression in mean water level which occurs when a group of high waves reflects 
from the wall. When the waves that make up the primary wave system are out 
of phase, so that little or no resultant wave will be visible at  the wall, then the 
mean water level is raised, which strictly speaking should be called a set-up, 
although the latter term is normally used for the phenomenon that occurs when 
waves break upon a beach. 

The boundary conditions to be satisfied a t  the entrance to the resonator are 
continuity of the second-order potential and continuity of its derivative with 
respect to x. Using (16) and remembering that terms involving the coefficient B 
are being ignored, the derivative just inside the resonator takes the form 

-2Abk-W-lcoshk-(z+d) ID,] ID,[ sink-Zsin(w-t-a-) 

= C(2)cosh k-(z+d) sin (o-t - a-), say. (17) 

Thus the condition on the derivative of the second-order potential just outside 
the resonator is 

C!2)coshk-(Z+d)sin(o-t-aa-) for (yI < i b ,  p = 4 0 for $b < IyI < &W. 

If all the terms in the expression for the radiated primary wave system had been 
retained then the left-hand side of the above equation would have taken the 
form of a sum of cosines of linear functions of y. The condition to be satisfied by 
each coefficient would have been found by multiplying each side of the equation 
by the appropriate cosine and integrating over the range IyI < + W. As only that 
part of the radiated wave system which is independent of y is of importance for 
the case being considered in this paper, the above condition on 4:) a t  x = 0 takes 
the simple form 

W$g) = bC@) cosh k-(z + d )  sin (w-t - a-). (18) 

Using ( 13) to evaluate the derivative of $@) gives 

&$) = Ah- cosh k-(z + d )  [( - a, e ,  cos a, + a, el cos a, - el e2 sin a-) sin w-t 

+ (al e2 sin a, + a2 el sin a, - el e2 cos a-) cos w-t] .  

One can show that this expression for 6:) satisfies (18) after some algebra and use 
of the definitions given in (11) together with the definition of C(,) given in (17). 
Thus the boundary condition on the derivatives of the second-order potentials a t  
x = 0 is identically satisfied by the potentials given in (13) and (16). 

The remaining boundary condition is continuity of the second-order potential 
itself, in other words second-order pressure, a t  the entrance to the resonator. 
Using (1 6), the potential just inside the resonator is 

$(,) = 2Acoshk-(z+d) ID,[ ID,I cosk-Zsin(w-t-a-). (19) 
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The potential just outside the resonator is obtained from (13) and takes the form 

6@) = A cosh k-(z + d )  [(2a, a2 - a, e2 sin a2 - a2 el sin a, + el e2 cos a-) 

x sin o-t  + ( - a, e2 cos a2 + a2 el cos a, - e, e2 sin a-) cos o-t]. (20) 

Subtracting the potential given in (20) from that given in (19) gives 

E cosh k-(z + d )  sin (w-t - a-), (211 
where 

2 4  a2 ( I  - b2 W-2)  sin k,  I sin k2 I 
(cos2 k,  1 + b2 W-2 sin2 k, Z)* (cos2 k2 1 + b2 W-2 sin2 k2 I)*' 

E =  

Thus the second-order potentials do not match across the entrance to the reso- 
nator. B s  mentioned in the introduction, this occurs because different wave 
heights inside and outside the resonator lead to different amounts of set-down on 
either side of the entrance. The difficulty is overcome by introducing a second- 
order potential $2) which fluctuates a t  the difference frequency w- and satisfies 
Laplace's equation together with the boundary conditions 

and 
~ ( 2 )  = 0 on z = - d  

ri2) - w ( ~ )  = gy@)-- & = 0 on the free surface z = 0. 

Thus inside the resonator 

#g) = D2)coshK-(z+d) [sin(@-t+ K-(x+I)-y)+sin(w-t-K-(x+t)-y)], 
(22) 

(23) 

while outside the potential representing the radiated wave takes the form 

$2) = e@) cosh K-(z + d )  cos (w-t - I[-x - y ) ,  

where t'he wavenumber K- is defined by 

= K-g tanh K-d. 

More exactly, the radiated potential consists of a sum of terms involving cosines 
of y but since the wavelengths of interest are much larger than the flume width 
W only that term which is independent of y need be retained. Since the derivative 
of the second-order potential $(2) is continuous across x = 0 the second-order 
potential q5g) must satisfy continuity of its derivative across x = 0. This gives 

(24)  e(2) = - 2b W-lDC2) sin K-l. 

The remaining boundary condition is continuity of the total second-order 
potential $2)+$,2) across x = 0. In  this requirement the mismatch, given in 
expression (21), between $2) on either side of x = 0 is the driving term causing a 
response in the resonator with its associated radiated wave outside. It may be 
seen straight away that because the driving term is not a real wave its variation 
with depth is different from that of a real wave with the same frequency. This 
means that the response produced should consist of the long wave, represented by 
(22) and (23), together with a solution localized a t  the resonator entrance much 
in the same way as a wave paddle produces a local solution as well as surface 
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waves. Since only long waves are of interest here the local solution will be small 
and one is justified in assuming 

cosh k-(z + d )  2 cosh K-(x + d) .  

With this assumption, continuity1of total potential‘gives 

2D(2) cos K-1 cosy = e(2) sin y - E cos a-, 

2DS cos K-1 sin y = e(2) cosy + E sin a-. 

Substituting for e@) from (24) gives 

E 
2( cos2K-1 + b2 W-2 sin2K-l)*’ 

0 1 2 )  = 

cos K- 1 sin a- + b W-1 sin K-1 cos a- 
cos K-1 cos a- - b W-1 sin K-1 sin a-’ 

tany = 

It can be seen immediately from the above relation for DC2) that the mismatch E 
which occurs in $(,) a t  the entrance will be amplified inside the resonator by a 
factor of Wlb when the group period corresponds to a natural period of the 
resonator, i.e. 

K-1 = i (2n  + 1) 7 ~ ,  n = 0,1,2. 

This mismatch can be interpreted in the following way. In the case of a real 
harbour of moderate size the primary wave system is unlikely to be amplified 
owing to dissipation. For the simple resonator being considered here this 
condition means 

coskit+O, j = I , 2 ,  

which, when combined with the inequality bl W < 1, reduces the mismatch given 
in (21) to 

E E 2Aa1 a2 tan k, 1 tan k, 1. 

This can be rewritten in the form 
cos k-1 

2coskllcosk21 
E g Z A a  a - 2Aa1 a2. 

In  shallow water (kjd < 1)  one can expect k- and K- to be almost equal to one 
another, leading to 

cos k-1 2 0 

when the resonance condition (25) is satisfied. This reduces E to the magnitude 
of the set-down potential associated with the standing wave pattern formed out- 
side the resonator entrance, i.e. 

E E - 2Aala2. 

Thus, for a real harbour subject to a primary wave system which satisfies the 
shallow-water condition (kd< 1) one can expect amplification of the set-down 
beneath wave groups when the group period is close to a natural period of the 
harbour. Further, the ampIification takes place as if the set-down just outside the 
harbour entrance, with amplitude { say, were a real long wave of amplitude c. 
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FIGURE 2. Plan view of the model experimental set-up. 

4. Comparison between theoretical and experimental results 
Experiments were carried out in a wave basin equipped with a piston-driven 

wave paddle. A plan of the lay-out is shown in figure 2. The model consisted of a 
wave flume about 2 m wide and 6 m long with sides made from aluminium sheet- 
ing. This flume was bounded at one end by the face of the wave paddle and a t  the 
other by a wall with a small gap. This gap formed the entrance to the resonator, 
which consisted of a narrow channel of length 0.6 m leading to a basin in the shape 
of a sector of a circle with half-angle 35" and radius 1.2 m. The experimental 
arrangement was chosen in order to avoid the generation of surf beats or edge 
waves owing to wave breaking. In particular all sides were vertical and the floor 
was level. Wave heights were measured with a twin-wire wave probe which was 
connected to a data logger producing magnetic tape for a computer analysis. 
The data were analysed using a fast Fourier transform computer program to give 
the spectrum of the wave system. This method of analysis was necessary since 
estimates of the long-period fluctuations associated with the primary wave system 
were required. 

Initially, monofrequency tests were performed in order to obtain the resonant 
periods of the model harbour. The Helmholtz resonance or pumping mode, which 
consisted of a fairly even rise and fall of the water level in the harbour basin with 
large horizontal flows in the entrance channel, occurred with period about 20 s. 
This mode is the counterpart of that found in the last section for a blocked-off 

6 F L M  79 
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FIGURE 3. A graph showing variation of the amplification factor with external wave height 
for (a) the Helmholtz resonance and (a) the sloshing mode. 

entrance channel, where the resonant wavelength equals four times the channel 
length. The sloshing mode occurred with period about 3 s and consisted of an anti- 
node along the curved back wall of the resonator, a nodal line inside the harbour 
basin and a second antinode in the entrance channel. This type of resonance also 
occurs in a closed basin, where the resonant wavelength equals twice the basin 
length. 

Separation of horizontal flows a t  each end of the entrance channel was very 
noticeable in the experimental work, particularly in the case of the Helmholtz 
resonance. The effect of separation is shown clearly in figures 3(a)  and ( 6 ) .  These 
display the variation of the amplification factor, for the Helmholtz and sloshing 
modes respectively, as a function of the wave amplitude outside the resonator. 
The amplification factor is defined as the ratio of the maximum wave height 

0 
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FIGURE 4(a). For caption see p. 85. 

occurring in the resonator to the wave height measured in front of the wall out- 
side the resonator. For the Helmholtz resonance the maximum wave height 
occurred along the back wall of the resonator but for the sloshing mode the wave 
height was a maximum a t  the antinode in the entrance channel. All measurements 
of wave heights outside were carried out with the mouth of the resonator blocked 
off. Clearly, if the harbour had been obeying linear theory a horizontal line would 
have been obtained in figures 3 (a)  and (b) .  The fall-off with increasing wave height 
obtained in the experiments appears to be consistent with a loss of energy pro- 
portional to the square of wave velocity, which is the sort of effect one expects 
from flow separation. These results imply that for real harbours with narrow 
entrances the turbulence caused at the harbour mouth is an effective dissipation 
mechanism for long waves. 

Having obtained the model harbour’s response at  the two longest resonant 
periods, the next set of experiments was carried out using a wave system made up 
of two frequencies fi and f2 higher than the resonant frequencies, but with a 
difference equal to one of the resonant frequencies already mentioned. The pur- 
pose of these experiments was to obtain the harbour’s response to the long-period 
fluctuations associated with such a wave system. The total wave system was 

6-2 
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FIGURE 4 ( b ) .  For caption see p. 85. 

measured just in front of the wall outside the resonator with the mouth of the 
resonator blocked off. The results of these experiments are shown by the crosses 
in figures 4(a), ( b )  and (c) respectively for the following cases: fl = 1-0 Hz with 
fz -fl = 0.0475 Hz (the Helmholtz resonance),fi = 0.6 Hz withf, -fl = 0.0475 
Hz,fl = 0.65 Hz with f, -fl = 0.34 Hz (the sloshing mode). These graphs show 
the amplitude of the long-period fluctuations as a function of the product of the 
two primary wave amplitudes. The amplitude of the long-period disturbance was 
obtained from the following formula for a wave of amplitude a: 

arms .  (iaZ)', 

where ar.m.s. is the square root of the area under the low frequency hump in the 
spectrum measured in front of the wall. A typical such spectrum is shown in 
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figure 5. The two main peaks represent the two waves of the primary system and 
the areas under these peaks were used to obtain the amplitudes of the primary 
waves, while the low-frequency hump occurring a t  the difference frequency is the 
associated long-period disturbance. Although the primary waves occur a t  dis- 
tinct frequencies their spectral lines are broadened owing to smoothing introduced 
in the analysis. 

It was noticed on traces of wave movement that the mean water level appeared 
to rise beneath a group of large waves and to fall in between the groups. Figure 6 
is a trace showing this effect with the mean level indicated by the dotted line. 
Thus the experiments showed that the long-period fluctuations consisted of a 
set-up beneath wave groups instead of the expected set-down. This can be 
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explained by the presence of a secondary free wave occurring with the same fre- 
quency as the set-down. This secondary wave is introduced by the wave paddle 
and occurs because the second-order expansion performed in the last section 
indicates that a stable sea with groups of waves present must have the associated 
set-down tied to the groups but the wave paddle is only programmed to produce 
the primary waves without the set-down. Thus the boundary condition on the 
paddle face requires the second-order horizontal water velocity d2) to vanish. 
This is achieved by introducing a real long wave with the same frequency as the 
set-down but with a phase shift of 180" so that the horizontal fluid velocity due to 
set-down is cancelled on the paddle face by the horizontal velocity due to the 
free wave. Since the secondary wave is a real wave it propagates away from the 
paddle slightly faster than the set-down, which travels a t  the group velocity. 
Thus the secondary wave is free in the sense that it is not tied to the groups of 
primary waves. In  the experiments described here the secondary waves are very 
long, so that their phase velocity is only just greater than the group velocity. 
This means that by the time the set-down and secondary wave have reached the 
wall at  the other end of the wave flume they will still be out of phase. This implies 
that cancellation of set-down by the secondary wave can be expected a t  the wall. 
Indeed, if the secondary wave has a larger amplitude than the set-down, one can 
expect to observe a set-up in measurements carried out at the wall, which appears 
to explain the experimental results obtained. 

In  more detail, the second-order surface elevation in front of the wall is given 
by (4): p = 9-1 (@ + p&) - *{q("}2), (26) 
where the left-hand side is evaluated at x = 0,  x = 0. Without the secondary 
wave, the usual set-down is obtained by using the slowly varying part of $(2) 
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FIGURE 6. A wave trace showing set-up beneath wave groups. 

associated with the two primary waves which reflect at  x = 0. This is given in the 
first term of (13) (the term with coefficient B has already been shown to be small 
and so is ignored), i.e. 

(27) 

where A is defined in (14). The first-order potential representing the two primary 
waves takes the form 

#2) = Aa,a, cosh k-(z +d)  [sin (w-t + k-x) +sin (w-t - k-x)], 

Using (27) and (28) to evaluate the slowly varying part of (26 )  gives the following 
expression for the set-down at the wall: 

?@) = a1a2 -A cosh k-d + 2(k, tanh k,d + k, tanh k,d) ["- 
cos w-t 1 gk, k, (cash k+d - cash k-d) - 

w1 w2 cosh k, d cosh k, d 
- 

= 5 cos w-t. (29) 

The values of [ appropriate to the experiments carried out are shown as the 
theoretical curves joining triangles in figures 4(a)-(c) .  As all these values are 
negative and since w-t = 2n77 (n integral) when the two primary wave8 are in 
phase with one another, (29) clearly implies that set-down should occur beneath 
large waves. 

If the second-order potential due to the secondary wave at  the difference 
frequency is added to the second-order potential representing set-down and the 
sum used to calculate the q@!) appearing in (26), a value of more appropriate to 
the model experiments should be obtained. This is achieved by using equation 
(A 4)  (see appendix) as well as (27) and (28) to evaluate the slowly varying part 
of the right-hand side of ( 2 6 ) .  In  this way the following equation is obtained: 

Zw-g-l(A cosh k-d + X cosh K-d) + 2(k, tanh k, d + k, tanh k, d )  

cos w-t - a, a, 20-g-1 Y cosh K-d sin w-t, (30) I gk, k, (cosh k+d - cosh k-d) 
o1 w, cosh k, d cosh k, d 

- 
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where S and Yare defined in the appendix. If this equation is written in the form 

p = gcos (w-t+/3) 

the values of g appropriate to the experiments already described can be calcu- 
lated. These values are shown as the theoretical curves joining squares in figures 
4(a)-(c) .  They have been plotted as positive quantities since the coefficient of 
cos w-t in (30) is now positive, implying that when the two primary waves are in 
phase (w-t = 2nn) a set-up should occur. 

It is clear that better agreement is obtained between theory and experiment 
when the secondary wave introduced by the wave paddle is included. These 
results can be taken as verifying the existence of secondary waves when groups 
are generated in model experiments. Bowers (1976) has given indirect evidence 
for their existence in a comparison between theory and model experiments on the 
long-period oscillations of a moored ship caused by wave grouping. Good agree- 
ment was obtained only when secondary waves at the group periods were taken 
into account. 

The secondary wave generated by the paddle in the case where the difference 
between the frequencies of the two primary waves equalled the frequency of the 
sloshing mode also happened to be close to a resonant mode of the wave flume of 
length L outside the resonator, i.e. sin K-L 0. For this reason the theoretical 
value of the secondary wave amplitude was much larger than the set-down ampli- 
tude. This explains the large values corresponding to the squares in figure 4(c). 
As mentioned in the appendix, the experimental response of the wave flume to 
monofrequency waves was found to display only small resonant peaks at low 
frequencies. This was probably due to losses between the flume walls and the 
paddle face. For this reason the secondary wave was unlikely to be amplified to 
the extent predicted by theory and this could explain why, in figure 4(c), the 
set-up observed was smaller than that predicted. 

Having accepted the existence of a secondary wave with the group period it is 
clear that it will excite a large response in the resonator when the group period is 
close to a resonant period. However, the theory presented in the last section 
indicates that the resonator should also respond to the set-down associated with 
the wave groups. In  particular, since the primary wave heights inside the reso- 
nator are smaller than those outside, the resonator should respond to the set- 
down outside as if it  were a real long wave. Thus one would expect the resultant 
of the secondary wave and the set-down to be amplified. In  order to test this 
theory figures 7 (a)-(c) have been plotted. 

Figure 7 ( a )  shows the wave amplitude along the back wall of the resonator 
plotted against the square root of the product of the two primary wave amplitudes 
for the casefl = 1.0 Hz withf, -fl = 0-0475 Hz (the Helmholtz frequency). The 
experimental values measured by the wave recorder are indicated by crosses. 
The curve joining triangles was obtained by calculating the amplitude of the 
secondary wave outside the resonator from the formula 

where #) is given by equation (A 4) in the appendix, reading off the amplifica- 
tion factor corresponding to that amplitude for the Helmholtz resonance from 

7 = $@’ Is, (31) 
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FIGURE 7. Amplitude of the resonant wave zis. (al a2)* for ( a )  fi = 1.0 Hz, fi = 1.0475 Hz, 
(b) fi = 0.6 Hz, fi = 0.6475 Hz and (c) fi = 0.65 Hz, fi = 0.99 Hz. x ,  experimental 
values. (a)  , ( b )  0, theoretical values obtained assuming resultant of set-down and second- 
ary wave is amplified; A, theoretical values obtained assuming only secondary wave is 
amplified. ( c )  0, theoretical values obtained assuming only measured set-up is amplified. 

figure 3 ( a )  and multiplying together the amplification factor and the amplitude. 
If the resonator were responding only to the secondary wave this curve should 
agree with the experimental curve through crosses. The curve through the squares 
was obtained by calculating the amplitude of the resultant of the secondary wave 
and the set-down outside the resonator from (31), where qP) is now the sum of the 
potentials given in (A 4) and (27), reading off the amplification factor corres- 
ponding to that amplitude from figure 3 (a )  and multiplying together the amplifi- 
cation factor and the amplitude. If the resonator were responding to the resultant 
of the secondary wave and the set-down this curve should agree with the experi- 
mental curve. 

Figure 7 (b)  is a similar plot to figure 7 (a)  but with fl = 0-6 Hz and fi -fl = 

0.0475 Hz. Figure 7(c) is a plot of the wave amplitude a t  the antinode in the 
entrance channel of the resonator against the same function of primary wave 
amplitude forfl = 0 6 5  Hz with fz -fl = 0.34 Hz (the frequency of the sloshing 
mode). The difference here is that only a theoretical curve through squares is 
plotted, together with the curve giving the experimental wave heights measured 
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inside the resonator. The curve through the squares was obtained by reading off 
from figure 4 (c) the set-up measured outside the resonator and multiplying this 
value by the appropriate amplification factor for the sloshing mode given in 
figure 3(b). The experimental value of the set-up was used here instead of a 
calculated value because the calculated value was too large for the reason given 
when discussing figure 4 (c) .  Since the measured set-up will be the resultant of the 
secondary wave and the set-down, squares are used to label the theoretical curve 
in figure 7 (c). 

Taking figures 7 (a)-(c) together, the results indicate that the resonator res- 
ponded to the resultant of the set-down and the secondary free wave rather than 
to just the secondary wave. This implies that in a real sea one can expect harbour 
resonances to be excited by set-down beneath wave groups. 

One important point brought out in the experimental work is that, although 
set-down increases as the square of the primary wave height, the height of 
resonant long waves excited inside the harbour by set-down will be more nearly 
proportional to the primary wave height itself. This is demonstrated by the plots 
in figure 7, where straight lines were obtained instead of a square-law increase 
with primary wave amplitude. The reason is simply that, as the primary wave 
height increases, the square-law increase in the amplitude of the resonant wave 
excited by set-down is counteracted by the decrease in the amplification factor 
owing to flow separation in the harbour entrance. 

I am grateful to Mr G. Lean and Mr G. Gilbert for many helpful discussions. 
The work described here is part of the research programme a t  the Hydraulics 
Research Station, Wallingford, and the paper is published by permission of the 
Director of Hydraulics Research. 

Appendix. Calculation of the velocity potential of the secondary wave 
The potential of the secondary wave is determined by the boundary condition 

on the face of the wave paddle. Since the paddle was programmed to produce only 
two sine waves of slightly different frequency there was no second-order paddle 
movement. Therefore, the boundary condition on the paddle face is 

ug’ = 0. 

qq) +p$$g = 0, 

Denoting the paddle movement by <(l), this condition can be expressed in the 
form 

where $$(2) is the sum of the potentials due to the set-down and the secondary 
wave and the whole expression is evaluated a t  the mean position of the paddle, 
x = L. 

The first-order paddle movement is related to the primary wave amplitudes by 
a transfer function. This function will be dependent on reflexions from the 
paddle of waves that have already reflected once from the wall a t  the end of the 
flume (x = 0). Looking a t  the experimental set-up shown in figure 2 one might 
expect quite small paddle movements at a resonant period of the flume to lead to 

(A 1) 
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large wave amplitudes. In  order to test whether such resonances were present the 
response of the wave flume to monofrequency waves was examined. It was found 
that small resonant peaks were obtained at low frequencies but that, although 
predicted theoretically, no resonances were apparent in the range of frequencies 
covering the primary wave systems used in the experimental work. This could 
have been due to losses through the gap between the paddle face and the ends of 
the flume walls. This gap had to be present to allow for movement of the paddle 
back and forth. For this reason the usual transfer function relating the paddle 
movement to the amplitude of a progressive wave propagating away from the 
paddle is assumed. Thus, for a primary wave system consisting of two frequencies, 

where 
nj = Q (1 + 2kj dlsinh 2kj d ) .  

Denoting the potential of the secondary wave by and the second-order 
Stokes potential by $i2), equation (A I )  can be put in the form 

(A 3) (2) - - (2)- (1) (1) 

Then the potential of the secondary wave fluctuating at the group frequency is 
determined by evaluating the slowly varying part of the right-hand side of 
(A 3) using (27) for $i2’, ( 2 8 )  for $(l) and (A 2) for <(l). This potential $%) which 
must also satisfy the usual boundary conditions on a surface wave, is found to be 

$22 = a, a, cosh K-(z + d )  [X{sin (w-t + K-x) + sin (w-t - K-x)} 

where 

4 W X  - $sz E $xx. 

+ Y{cos (w-t + K-x) + cos (w-t - K-x)}], (A 4) 

sin k, L cos k, L 
K- sin K-L - 2dK- 
Ak- sin k-L x = -  

k, n, tanh k, d 
w2 tanh k, d 

- sin k, L cos k, L)  , 

g cos k, L cos k, L k, n2 tanh k, d k, n, tanh lc, d 
= - 2dK- sin K-L w1 tanh k,d + 0, tanh k,d 
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